Headlines News :

POPULAR POST

Cara Kerja GPS

  • Sinyal Satelit GPS
  • Trigonometri, Triangulasi
  • Bagaimana Mengetahui Jarak Antara Satelit dan Pesawat Penerima GPS (receiver GPS)

Sinyal Satelit GPS

Satelit hanya bertugas mengirim data secara terus menerus, dalam hal ini satelit tidak memerlukan input karena perhitungan posisi sebetulnya di lakukan oleh pesawat penerima GPS dan bukan di satelit, hal itulah yang membuat satelit GPS boleh di pake siapa saja tanpa membebani satelit itu sendiri.
Untuk memastikan Jam di Satelit GPS benar benar tepat, maka satelit gps di bekali dengan jam atom
Dalam bekerja Satelit GPS mengirimkan 3 Data secara terus menerus
  1. Kode Pseudorandom, ini merupakan id yang di kirimkan dan berubah setiap saat inilah yang berperan penting dalam menentukan jarak
  2. Data ephemeris merupakan informasi keadaan satelit seperti misalkan rusak, baik, dan sebagainya
  3. Data Almanac informasi tentang posisi satelit

 

Trigonometri, Triangulasi

Triangulasi adalah sebuah cara matematis untuk mengetahui posisi suatu benda dengan memanfaatkan pola dari segitiga, berikut ini gambaran sederhana bagimana triangulation pada GPS
Triangulasi GPS.JPG
Dengan mengetahui ketiga jarak satelit, maka kita bisa menentukan titik koordinat di bumi, baik itu di tepat di atas tanah atau melayang seperti di pesawat, yang di atas adalah gambaran sederhana, pada kenyataannya kita menemukan masalah yang lebih rumit untuk menentukan titik pada bidang 3 dimensi. pertanyaan selanjutnya apa yang bisa membuat kita tahu jarak penerima gps baik itu handset seperti HP atau peralatan khusus gps.

 

Bagaimana Mengetahui Jarak Antara Satelit dan Pesawat Penerima GPS (receiver GPS)

Pada dasarnya ini adalah sederhana yaitu cepat rambat signal di kalikan waktu, tapi pada prakteknya tidak sesederhana itu,
Pseudorandom adalah hal yang paling berperan dalam urusan ini, Pseudorandom mengirimkan code yang selalu berbeda setiap saat, namun kode-kode ini telah di ketahui pada detik keberapa code ini keluar, dalam prakteknya mungkin bukan detik, tapi sekian milidetik, setelah menerima kode Pseudorandom, receiver gps akan bisa menentukan berapa lamakah keterlambatan kode-kode itu sampai di receiver gps, dan keterlambatan itulah yang akan di hitung sebagai waktu tempuh signal dari satelit menuju ke reciever, dari waktu tempuh di kali kecepatan di hasilkanlah jarak.
Saya ibaratkan seperti ini, anda dan teman anda di ujung lapangan menyanyikan lagu yang sama dan bersamaan, namun karena jarak maka anda akan mendengarkan lagu teman anda lebih lambat dari lagu anda sendiri.
jika demikian, pertanyaan selanjutnya bagimanakah memastikan jam di receiver gps adalah jam yang tepat ?

 

Jam di Receiver GPS tidak perlu terlalu akurat

perhitungan waktu membutuhkan ketelitian yang luar biasa, mengingat cepat rambat signal yang mencapai 300.000.000 m/detik maka selisih sedikit saja maka akan mengakibatkan kesalahan yang sangat besar, pada satelit GPS itu tidak masalah karena di lengkapi dengan Jam Atom yang sangat akurat, yang katanya harganya mencapai 100 ribu dollar amerika, jika seandainya jam atom juga harus di terapkan di receiver GPS, maka GPS akan menjadi sia-sia, karena tidak ada yang sanggup/mau membeli jam atom hanya untuk GPS, untungnya para pembuat GPS sudah memikirkan hal itu, maka ada satu ide brilian yang bisa membuat GPS bekerja meskipun jam di receiver gps tidaklah perlu terlalu akurat

 

Menghitung Waktu Tempuh dengan Jam receiver yang tidak terlalu akurat

Paragraf ini mungkin akan sedikit mengacaukan tentang contoh gambar triangulasi di atas,
Gambar pada Triangulasi di atas ada 3 satelit, padahal kenyataannya GPS baru bekerja jika menerima 4 atau lebih signal satelit, yup jika saja receiver GPS di lengkapi dengan jam atom, maka 3 satelit sudah cukup untuk mengetahui posisi kita, namun karena jam di receiver GPS bukanlah jam yang akurat, maka pesawat penerima GPS (receiver gps) baru bisa bekerja jika menangkap signal 4 atau lebih satelit. receiver akan mengambil sampel jam dari salah satu satelit (dengan signal Pseudo random), dan kemudian menghitung kemungkinan letak dengan garis dan lingkaran berpotongan, perhatikan gambar ini.
lingkaran berpotongan pada gps
Gambar di atas adalah contoh dalam 2 dimensi, karena terlalu sulit bagi saya untuk menggambarkannya dalam bentuk 3 demensi, sebenarnya lingkaran-lingkaran itu adalah kemungkinan-kemungkinan yang di hasilkan berdasarkan perkiraan jarak tempuh signal satelit (panah pada gambar), saya katakan perkiraan karena kita tahu bahwa jam di receiver gps tidaklah setepat jam atom seperti yang ada di satelit, pada prakteknya akan di butuhkan banyak lingkaran berpotongan untuk mengetahui letak kita pemegan receiver gps baik itu di hp android, blackbery ataus di perangkat GPS sungguhan.
update: Permasalahan dengan jam receiver GPS yang tidak akurat
karena ada yang tanya lebih detail saya akan mencoba menjelaskan lagi, permasalahan dengan jam receiver gps yang tidak akurat itu.
Begini ceritanya, pertama hp atau perangkat yang ada GPSnya akan menghitung jarak satelit dengan cara mengalikan waktu tempuh dengan kecepatan signal dengan menggunakan jam seadanya, di ketemukanlah radius atau jari jari pada lingkaran lingkaran, jika jam di perangkat gps (receiver gps) itu salah, maka lingkaran lingkaran yang di hasilkan tidak akan berpotongan di satu titik, lingkaran yang di hasilkan bisa jadi terlalu besar atau terlalu kecil, maka software di receiver GPS akan melakukan pendekatan dengan cara menambahkan atau mengurangi jam yang ada, dan itu berarti sama dengan membesarkan atau mengecilkan lingkaran secara bersamaan, hingga tercapailah lingkaran-lingkaran yang berpotongan, titik perpotongan lingkaran itulah yang akan di nyatakan sebagai posisi kita., ingat bahwa lingkaran itu di hasilkan dari waktu di kali kecepatan, maka jika waktu pengukurnya di ubah otomatis radius yang di hasilkannya juga berubah semua.
pada kenyataanya karena banyak faktor, seperti pantulan dan lain-lain, lingkaran lingkaran tersebut tidak akan bisa berpotongan secara tepat di satu titik, namun software akan mencari kemungkinan yang paling dekat, makanya di perangkat gps yang anda gunakan akan tertulis “akurasi sekian meter”, semakin banyak satelit yang bisa di tangkap maka akurasinya akan semakin baik.

TV Digital



1. Pengertian TV Digital dan TV Analog
  • TV Digital
Televisi digital (bahasa Inggris: Digital Television, DTV)atau penyiaran digital adalah jenis televisi yang menggunakan modulasi digital dan sistem kompresi untuk menyiarkan sinyal video, audio dan data ke pesawat televisi. TV Digital bukan berarti pesawat televisinya yang digital, namun lebih kepada sinyal yang dikirimkan adalah sinyal digital atau mungkin yang lebih tepat adalah siaran digital (Digital Broadcasting). Televisi resolusi tinggi atau high-definition television (HDTV), yaitu: standar televisi digital internasional yang disiarkan dalam format 16:9 (TV biasa 4:3) dan surround-sound 5.1 Dolby Digital. TV digital memiliki resolusi yang jauh lebih tinggi dari standar lama. Penonton melihat gambar berkontur jelas, dengan warna-warna matang, dan depth-of-field yang lebih luas daripada biasanya. HDTV memiliki jumlah pixel hingga 5 kali standar analog PAL yang digunakan di
  • TV Analog
Televisi analog mengkodekan informasi gambar dengan memvariasikan voltase dan/atau frekuensi dari sinyal. Seluruh sistem sebelum Televisi digital dapat dimasukan ke analog. Sistem yang dipergunakan dalam televisi analog NTSC (national Television System Committee), PAL, dan SECAM.
Kelebihan signal digital dibanding analog adalah ketahanannya terhadap gangguan (noise) dan kemudahannya untuk diperbaiki (recovery) di penerima dengan kode koreksi error (error correction code ). 


2. Perbedaan TV Digital dengan TV Analog.
Di Indonesia agar segera diluncurkan karena Pemerintah juga berpendapat bahwa teknologi televisi digital lebih efisien dalam penggunaan kanal frekuensi dibandingkan teknologi analog yang selama ini dipergunakan. Berdasarkan master plan televisi yang tengah disusun, pemerintah akan mengalokasikan 14 kanal frekuensi. 10 kanal frekuensi kini telah dialokasikan bagi televisi swasta yang telah beroperasi. Satu kanal untuk TVRI, satu kanal untuk televisi lokal, dan dua kanal untuk televisi digital. Walaupun televisi digital harus banyak melakukan adaptasi terhadap jangkauan yang telah dapat dicapai oleh televisi analog. Penerapan siaran TV digital sebagai pengganti TV analog pada pita UHF dilakukan secara bertahap sampai suatu batas waktu cut-off TV analog UHF yang ditetapkan (2015 di kota besar dan 2020 secara nasional).
Wilayah layanan TV digital penerimaan tetap free-to-air DVB-T sama dengan wilayah layanan TV analog UHF sesuai Keputusan Menteri Perhubungan No. 76 Tahun 2003. Alokasi kanal frekuensi untuk layanan TV digital penerimaan tetap free-to-air DVB-T di Indonesia adalah pada band IV dan V UHF, yaitu kanal 28 – 45 (total 18 kanal) dengan lebar pita masing – masing kanal adalah 8 MHz. Namun, setiap wilayah layanan diberikan jatah hanya 6 kanal, karena 12 kanal lain digunakan di wilayah – wilayah layanan sekitarnya (pola reuse 3 grup kanal frekuensi). TV digital, katanya, memang menuntut keterlibatan banyak pihak, di antaranya perusahaan seluler, sedangkan pemerintah berfungsi untuk melindungi produk TV digital dan sebagai regulator.
Untuk menyusun strategi migrasi ke teknologi digital, pemerintah diusulkan membentuk Komisi Nasional Televisi yang beranggotakan departemen dan kalangan lembaga penyiaran. Pada 2004 diharapkan Komisi ini sudah terbentuk, sehingga sosialisasi dan uji coba televisi digital dapat dilakukan.
Perbedaan mendasar antara TV Digital dengan TV Analog
Perbedaan yang paling mendasar antara sistem penyiaran televisi analog dan digital terletak pada penerimaan gambar lewat pemancar. Pada sistem analog, semakin jauh dari stasiun pemancar televisi, sinyal akan melemah dan penerimaan gambar menjadi buruk dan berbayang. Sedangkan pada sistem digital, siaran gambar yang jernih akan dapat dinikmati sampai pada titik dimana sinyal tidak dapat diterima lagi.
Perbedaan TV Digital dan TV Analog hanyalah perbedaan pada sistim tranmisi pancarannya, kebanyakan TV di Indonesia, masih menggunakan sistim analog dengan cara memodulasikannya langsung pada Frekwensi Carrier, Sedangkan pada Pada sistim digital, data gambar atau suara dikodekan dalam mode digital (diskret) baru di pancarkan.
Orang awam pun dapat membedakan dengan mudah, jika TV analog signalnya lemah (semisal problem pada antena) maka gambar yang diterima akan banyak ‘semut’ tetapi jika TV Digital yang terjadi adalah bukan ‘semut’ melainkan gambar yang lengket seperti kalau kita menonton VCD yang rusak. Kualitas Digital jadi lebih bagus, karena dengan Format digital banyak hal dipermudah.
Siaran TV Satelit Dulu memakai Analog. Sekarang sudah banyak yang digital. Tidak semua TV satelit memakai sistim Digital. Di beberapa satelit Arab banyak yang memakai mode analog. Sebenarnya untuk menerima siaran digital untuk TV yang analog tidaklah terlalu mahal. Receiver ini hanya tinggal pasang antena dan kemudian AV nya colokkan ke TV. Untuk siaran TV satelit namanya DVB-S (Digital Video Broadcasting – Satelite). Sedangkan untuk di daratan namanya DVB-T(Digital Video Broadcasting – Terresterial)
Jika anda melihat Indosiar atau Metro TV atau RCTI melalui satelit anda bisa melihat siaran TV Digital. Tidak Harus plasma, Tidak harus HD, karena stasiun TV Nasional masih memakai SDTV meskipun mereka memancarkan secara digital lewat satelit Dengan memakai TV 14 inchi yang paling murahpun anda bisa menonton TV digital. Sedangkan jika anda membeli TV LCD, hampir semua bisa menerima signal Digital tanpa alat tambahan karena sudah dilengkapi dengan receiver digital.
3. Dampak yang timbul akibat adanya system siaran digital di Indonesia.
Saat ini populasi pesawat televisi tidak kurang dari 40 juta unit, dengan pemirsa lebih dari 200 juta orang, jauh lebih banyak dibandingkan dengan komputer, misalnya, yang hanya sekitar 5,9 juta unit. Terlihat bahwa penggemar televisi begitu banyak di Indonesia .
Televisi adalah alat penangkap siaran bergambar. Kata televisi berasal dari kata tele (jauh) dan vision (tampak) jadi televisi memiliki arti dapat melihat dari jarak jauh. Penemuan televisi ini mampu mengubah peradaban dunia. Semua gambar televisi dibentuk oleh titik tunggal cahaya yang bergerak bolak-balik, depan-belakang atau atas-bawah, secara cepat pada layar televisi yang tak tampak oleh mata, sehingga yang terlihat hanyalah rangkaian gambar. Pada tahun 1884 Paul Nipkow mencetuskan ide tentang pemindaian gambar dengan cara memecahkanya ke dalam rangkaian titik cahaya yang bergerak secara linear menyeberangi sudut pandangan. Sinyal televisi bekerja seperti radio AM, terkecuali dalam penghubung pembawa frekuensi tinggi. Pada radio dari suara besar ke lembut sedangkan televisi dari terang ke gelap. Perangkat televisi disinkronisasikan dengan transmiter untuk menghasilkan pola yang tepat dari sebuah piksel yang akan ditempatkan pada layar. Televisi ditransmisikan dengan dua pita frekuensi, VHF (very high frequency) dan UHF (ultra high frequency), dan setiap saluran memiliki lebar pita keseluruhan mencapai 6 MHz. Jaringan televisi pertama menggunakan kabel coaxial dan teknologi gelombang mikro. Pada tahun 1970-an satelit menjadi standar dalam menghubungkan kabel dan jaringan penyiaran kepada afiliasi mereka dan untuk mentransmisikan berita lokal dan pergelaran olahraga ke kantor berita pusat. Saat ini, jaringan serat optik juga ikut digunakan.
Kemunculan televisi digital di indonesia harus dipikirkan dampak dan konsekuensinya karena selama ini masih banyak masyarakat yang menggunakan dan terbiasa dengan televisi telivisi analog. Sedikit ketidaknyamanan yang mau tidak mau harus diterima dengan peralihan ke TV digital ini adalah:
  • Perlunya pesawat TV baru atau paling tidak kita perlu membeli TV Tuner baru yang harganya bisa dibilang cukup mahal. Hal tersebut akan menimbulkan dampak yang besar, mengingat hampir seluruh komponen pertelevisian di Indonesia masih menggunakan komponen analog, sehingga kemajuan tekhnologi televisi digital ini dapat mematikan usaha-usaha kecil yang selama ini telah ada. Karenanya hal ini mewajibkan Pemerintah untuk mensosialisasikan lebih rinci kepada masyarakat.
  • Mahalnya perangkat transmisi dan operasional broadcast berbasis tehnologi digital merupakan persoalan tersendiri bagi kemampuan industri televisi di Indonesia. Bagaimanapun untuk bisa menyiarkan program secara digital, perangkat pemancar memang harus diganti dengan perangkat baru yang memiliki sistem modulasi frekuensi secara digital. Untuk mem-back up operasional sehari-hari saja dengan tingkat persaingan antar sesama radio dan televisi swasta nasional saja sudah sangat berat, apalagi untuk harus mengalokasikan sekian persen pemasukan iklan untuk digunakan bagi digitalisasi. Selain itu, dalam masa transisi, stasiun televisi harus siaran multicast atau operasional di dua saluran secara paralel: analog dan digital, karena tetap memberi kesempatan pada masyarakat yang belum dapat membeli televisi digital.
  • Sistem pemrosesan sinyalnya. Pada sistem digital, karena diperlukan tambahan proses misalnya Fast Fourier Transform (FFT), Viterbi decoding dan equalization di penerima, maka TV Digital ini akan sedikit terlambat beberapa detik dibandingkan TV Analog. Ketika TV analog sudah menampilkan gambar baru, maka TV Digital masih beberapa detik menampilkan gambar sebelumnya.
  • Bagaimana soal akses pada jaringan media serta kondisi sistem akses itu sendiri. Persoalan seperti pengaturan decoder TV digital maupun content media menjadi layak kaji dalam hal ini. Dan akses pada spektrum frekuensi
  • Bagaimanapun pada era penyiaran digital telah terjadi konvergensi antarteknologi penyiaran (broadcasting), teknologi komunikasi (telepon), dan teknologi internet (IT). Dalam era penyiaran digital, ketiga teknologi tersebut sudah menyatu dalam satu media transmisi. Dengan demikian akses masyarakat untuk memperoleh ataupun menyampaikan informasi menjadi semakin mudah dan terbuka
  • Terjadinya migrasi dari era penyiaran analog menuju era penyiaran digital, yang memiliki konsekuensi tersedianya saluran siaran yang lebih banyak, akan membuka peluang lebih luas bagi para pelaku penyiaran dalam menjalankan fungsinya dan dapat memberikan peluang lebih banyak bagi masyarakat luas untuk terlibat dalam industri penyiaran ini.
  • Momentum penyiaran digital dapat membuka peluang yang lebih banyak bagi masyarakat dalam meningkatkan kemampuan ekonominya. Peluang usaha di bidang rumah produksi, pembuatan aplikasi-aplikasi audio, video dan multimedia, industri senetron, film, hiburan, komedi dan sejenisnya menjadi potensi baru untuk menghidupkan ekonomi masyarakat.
Televisi di Indonesia telah menjadi alat penting baik untuk hiburan maupun untuk mendapatkan informasi. Baik televisi digital maupun analog dalam penyiarannya memiliki kesamaan yaitu memiliki dampak psikologis terhadap penontonnya. Dengan frekuensi menonton yang tinggi dan kualitas tontonan yang rendah akan berdampak buruk baik pada orang dewasa maupun pada pada anak – anak.
Sistem penyiaran TV Digital penggunaan apliksi teknologi digital pada sistem penyiaran TV yang dikembangkan di pertengahan tahun 90an dan diujicobakan pada tahun 2000. Pada awal pengoperasian sistem digital ini umumnya dilakukan siaran TV secara bersama dengan siaran analog sebagai masa transisi. Sekaligus ujicoba sistem tersebut sampai mendapatkan hasil penerapan siaran TV Digital yang paling ekonomis sesuai dengan kebutuhan dari negara yang mengoperasikan.
Dampak Penyiaran TV Digital
Dampak Positif
Banyak manfaat yang dapat diperoleh masyarakat dengan beralih ke penyiaran TV digital antara lain:
• Kualitas gambar yang lebih halus dan tajam,
• Pengurangan terhadap efek noise,
• Kemudahan untuk recovery pada penerima dengan error correction code, serta
• mengurangi efek dopler jika menerima siaran tv dalam kondisi bergerak (misalnya di mobil, bus, maupun kereta api).
• Selain itu sinyal digital dapat menampung program siaran dalam satu paket, dikarenakan pemakaian bandwidth pada tv digital tidak sebesar tv analog.

Dampak Negatif
Disamping banyak hal yang bermanfaat, tentunya kendala yang akan dihadapi dalam migrasi ke siaran TV digital pun juga semakin banyak seperti:
• Regulasi bidang penyiaran yang harus diperbaiki,
• Standardisasi yang harus segera ditentukan baik untuk perangkat dan teknologi yang akan digunakan,
• Industri pendukung yang harus segera disiapkan baik perangkat maupun kontennya.
• Jika kanal TV digital ini diberikan secara sembarangan kepada pendatang baru, selain penyelenggara TV siaran digital terrestrial harus membangun sendiri infrastruktur dari nol, maka kesempatan bagi penyelenggara TV analog eksisting seperti TVRI, 5 TV swasta eksisting dan 5 penyelenggara TV baru untuk berubah menjadi TV digital di kemudian hari akan tertutup karena kanal frekuensinya sudah habis.

4. Bagaimana Pendapat tentang Prospek masa depan penyiaran televisi dikaitkan dengan adanya digitalisasi system siaran televisi
Dengan adanya kemajuan dalam teknologi di Indonesia, sudah seharusnya kita merasa bangga. Karena tidak ada lagi kata ketertinggalan dalam segi teknologi. Namun transisi dari perpindahan TV Analog ke TV Digital tidak mudah, banyaknya tanggapan dari masyarakat atau pengguna yang berbeda-beda.
Transisi dari pesawat televisi analog menjadi pesawat televisi digital membutuhkan penggantian perangkat pemancar televisi dan penerima siaran televisi. Agar dapat menerima penyiaran digital, diperlukan pesawat TV digital. Namun, jika ingin tetap menggunakan pesawat televisi analog, penyiaran digital dapat ditangkap dengan alat tambahan yang disebut kotak konverter (Set Top Box). Ketika menggunakan pesawat televisi analog, sinyal penyiaran digital akan dirubah oleh kotak konverter menjadi sinyal analog. Dengan demikian pengguna pesawat televisi analog tetap dapat menikmati siaran televisi digital. Pengguna televisi analog tetap dapat menggunakan siaran analog dan secara perlahan-lahan beralih ke teknologi siaran digital tanpa terputus layanan siaran yang digunakan selama ini.
Proses transisi yang berjalan secara perlahan dapat meminimalkan risiko kerugian terutama yang dihadapi oleh operator televisi dan masyarakat. Resiko tersebut antara lain berupa informasi mengenai program siaran dan perangkat tambahan yang harus dipasang tersebut. Sebelum masyarakat mampu mengganti televisi analognya menjadi televisi digital, masyarakat menerima siaran analog dari pemancar televisi yang menyiarkan siaran televisi digital.
Bagi operator televisi, risiko kerugian berasal dari biaya membangun infrastruktur televisi digital terestrial yang relatif jauh lebih mahal dibandingkan dengan membangun infrastruktur televisi analog. Operator televisi dapat memanfaatkan infrastruktur penyiaran yang telah dibangunnya selama ini seperti studio, bangunan, sumber daya manusia, dan lain sebagainya apabila operator televisi dapat menerapkan pola kerja dengan calon penyelenggara TV digital. Penerapan pola kerja dengan calon penyelenggara digital pada akhirnya menyebabkan operator televisi tidak dihadapkan pada risiko yang berlebihan. Di kemudian hari, penyelenggara penyiaran televisi digital dapat dibedakan ke dalam dua posisi yaitu menjadi penyedia jaringan, serta penyedia isi.
Kelebihan TV Digital
Televisi digital sudah bukan barang baru untuk saat ini. Walaupun begitu televisi digital bukan berarti pesawat TV-nya yang Digital, melainkan lebih kepada sinyal yang dikirimkan adalah signal digital atau mungkin yang lebih tepat adalah siaran digital (Digital Broadcasting). Kelebihan signal digital dibanding analog adalah ketahanannya terhadap noise dan kemudahannya untuk diperbaiki (recovery) di penerima dengan kode koreksi error (error correction code).
Keuntungan transmisi digital lainnya adalah less bandwidth (atau high efficiency bandwidth) karena interference digital channel lebih rendah, sehingga beberapa channel bisa dikemas atau “dipadatkan” dan dihemat. Hal ini menjadi sangat mungkin karena broadcasting TV Digital menggunakan sistem OFDM (Orthogonal Frequency Division Multiplexing) yang tangguh dalam mengatasi efek lintas jamak (multipath fading). Kemudian keuntungan lainnya adalah bahwa sinyal digital bisa dioperasikan dengan daya yang rendah (less power). Itulah beberapa hal yang sangat mengutungkan dalam TV digital. Keuntungan tersebut menghasilkan kualitas gambar dan warna yang sangat jauh lebih bagus daripada TV analog. (httpwww.beritaiptek.comzberita-beritaiptek-2006-01-11-Menyongsong-Era-TV-Digital.shtml.htm).

Kualitas penyiaran TV Digital

TV Digital memiliki hasil siaran dengan kualitas gambar dan warna yang jauh lebih baik dari yang dihasilkan televisi analog. Sistem televisi digital menghasilkan pengiriman gambar yang jernih dan stabil meski alat penerima siaran berada dalam kondisi bergerak dengan kecepatan tinggi. TV Digital memiliki kualitas siaran berakurasi dan resolusi tinggi. Teknologi digital memerlukan kanal siaran dengan laju sangat tinggi mencapai Mbps untuk pengiriman informasi berkualitas tinggi.

Frekuensi TV Digital

Secara teknis, pita spektrum frekuensi radio yang digunakan untuk televisi analog dapat digunakan untuk penyiaran televisi digital. Perbandingan lebar pita frekuensi yang digunakan teknologi analog dengan teknologi digital adalah 1 : 6. Jadi, bila teknologi analog memerlukan lebar pita 8 MHz untuk satu kanal transmisi, teknologi digital dengan lebar pita yang sama (menggunakan teknik multipleks) dapat memancarkan sebanyak 6 hingga 8 kanal transmisi sekaligus untuk program yang berbeda.
TV digital ditunjang oleh teknologi penerima yang mampu beradaptasi sesuai dengan lingkungannya. Sinyal digital dapat ditangkap oleh sejumlah pemancar yang membentuk jaringan berfrekuensi sama sehingga daerah cakupan TV digital dapat diperluas. TV digital memiliki peralatan suara dan gambar berformat digital seperti yang digunakan kamera video.

Keunggulan frekuensi TV Digital

Siaran menggunakan sistem digital memiliki ketahanan terhadap gangguan dan mudah untuk diperbaiki kode digitalnya melalui kode koreksi error. Akibatnya adalah kualitas gambar dan suara yang jauh lebih akurat dan beresolusi tinggi dibandingkan siaran televisi analog. Selain itu siaran televisi digital dapat menggunakan daya yang rendah.
Transmisi pada TV Digital menggunakan lebar pita yang lebih efisien sehingga saluran dapat dipadatkan. Sistem penyiaran TV Digital menggunakan OFDM yang bersifat kuat dalam lalu lintas yang padat. Transisi dari teknologi analog menuju teknologi digital memiliki konsekuensi berupa tersedianya saluran siaran televisi yang lebih banyak. Siaran berteknologi digital yang tidak memungkinkan adanya keterbatasan frekuensi menghasilkan saluran-saluran televisi baru. Penyelenggara televisi digital berperan sebagai operator penyelenggara jaringan televisi digital sementara program siaran disediakan oleh operator lain. Bentuk penyelenggaraan sistem penyiaran televisi digital mengalami perubahan dari segi pemanfaatan kanal ataupun teknologi jasa pelayanannya. Terjadi efisiensi penggunaan kanal frekuensi berupa pemakaian satu kanal frekuensi untuk 4 hingga 6 program.
Siaran televisi digital terestrial dapat diterima oleh sistem penerimaan televisi analog dan sistem penerimaan televisi bergerak. TV Digital memiliki fungsi interaktif dimana pengguna dapat menggunakannya seperti internet. Sistem siaran televisi digital DVB mempunyai kemampuan untuk memanfaatkan jalur kembali antara IRD dan operator melalui modul Sistem Manajemen Subscriber. Jalur tersebut memerlukan modem,jaringan telepon atau jalur kembali televisi kabel, maupun satelit untuk mengirimkan sinyal balik kepada pengguna seperti pada aplikasi penghitungan suara melalui televisi. Ada beberapa spesifikasi yang telah dikembangkan, antara lain melalui jaringan telepon tetap (PSTN) dan jaringan berlayanan digital terintegrasi (ISDN). Selain itu juga dikembangkan solusi komprehensif untuk interaksi melalui jaringan CATV, HFC, sistem terestrial, SMATV, LDMS, VSAT, DECT, dan GSM.

Manfaat penyiaran TV Digital

  • TV Digital digunakan untuk siaran interaktif. Masyarakat dapat membandingkan keunggulan kualitas siaran digital dengan siaran analog serta dapat berinteraksi dengan TV Digital.
  • Teknologi siaran digital menawarkan integrasi dengan layanan interaktif dimana TV Digital memiliki layanan komunikasi dua arah layaknya internet.
  • Siaran televisi digital terestrial dapat diterima oleh sistem penerimaan televisi tidak bergerak maupun sistem penerimaan televisi bergerak. Kebutuhan daya pancar televisi digital yang lebih kecil menyebabkan siaran dapat diterima dengan baik meski alat penerima siaran bergerak dalam kecepatan tinggi seperti di dalam mobil dan kereta.
  • TV Digital memungkinkan penyiaran saluran dan layanan yang lebih banyak daripada televisi analog. Penyelenggara siaran dapat menyiarkan program mereka secara digital dan memberi kesempatan terhadap peluang bisnis pertelevisian dengan konten yang lebih kreatif, menarik, dan bervariasi.

Baterai Nuklir

Pendahuluan

Untuk mendapatkan tenaga listrik dari energi nuklir, sejauh ini sudah banyak dilakukan melalui PLTN (Pusat Listrik Tenaga Nuklir) dan manfaatnya sudah sangat terasa bagi negara-negara maju, terutama dalam menggerakkan perindustriannya disamping untuk pemenuhan kebutuhan energi listrik bagi rumah tangga. Tenaga listrik yang dihasilkan oleh PLTN adalah berasal dari reaksi fisi (pembelahan) yang menghasilkan panas sangat besar. Panas yang sangat besar ini digunakan untuk menghasilkan uap bertekanan tinggi yang kemudian uap tersebut digunakan untuk menggerakkan turbin yang dihubungkan ke generator, sehingga akan diperoleh tenaga listrik. Sedangkan pemanfaatan energi nuklir melalui reaksi fusi (penggabungan) yang panasnya jauh lebih besar dari pada reaksi fisi, sampai saat ini masih dalam taraf penelitian mengingat belum ditemukan bahan yang tahan terhadap tekanan tingi dan juga suhu tinggi dengan orde ratusan ribu derajat Celcius.  Pemanfaatan energi nuklir untuk menghasilkan tenaga listrik sejauh ini memang sudah terbukti dapat bersaing dengan tenaga listrik yang diperoleh secara konvensional melalui pemakaian energi primer (batubara dan minyak) maupun melalui pemakaian energi terbarukan (air, panas bumi dan matahari). Selain dari itu, para ahli pada saat ini juga akan melengkapi kemampuan energi nuklir dengan cara lain untuk menghasilkan tenaga listrik arus searah (tenaga baterai/DC), tidak hanya tenaga listrik arus bolak-balik (AC) seperti yang sudah dikenal selama ini melalui PLTN. Cara lain yang dimaksud adalah tidak dengan memanfaatkan panas dari hasil reaksi fisi maupun fusi, akan tetapi memanfaatkan proses terjadinya reaksi peluruhan (decay process) pada setiap bahan radioaktif. Pada reaksi peluruhan ini yang dimanfaatkan adalah radiasi nuklir itu sendiri yang disertai dengan pelepasan elektron atau muatan listrik dan juga kemampuan menumbuk bahan untuk menghasilkan elektron sekunder yang dapat diubah menjadi tenaga listrik. Bila hal ini bisa direalisasikan maka tenaga listrik yang diperoleh dari hasil proses peluruhan zat radioaktif akan dapat menambah sumber tenaga listrik arus searah, disamping sumber arus searah (tanaga baterai) yang telah dikenal secara konvensional berupa baterai kimia sel basah maupun sel kering. 

Proses Peluruhan Zat Radioaktif 

Proses peluruhan zat radioaktif sebenarnya adalah proses alami dari suatu zat radioaktif atau radioisotop dalam rangka keseimbangan menuju kepada energi dasarnya (ground state energy). Proses peluruhan zat radioaktif yang terjadi berkaitan erat dengan jenis radiasi nuklir dari suatu radioisotop. Untuk itu, perlu diketahui beberapa jenis radiasi yang mengikuti terjadinya proses peluruhan tersebut. Jenis radiasi yeng dimaksud sebenarnya ada 8 macam, namun yang akan dijelaskan hanya yang dalam proses peluruhannya menghasilkan elektron atau yang dapat menyebabkan ionisasi langsung saja, yaitu radiasi yang dipancarkan oleh radioisotop yang digunakan dalam baterai nuklir. Jenis radiasi tersebut adalah :  1. Radiasi Alpha (a) Radiasi ini pada umumnya terjadi pada elemen berat, yaitu atom yang nomor massanya besar (mohon dilihat sistem periodik/tabel berkala) yang tenaga ikatnya rendah, yaitu tenaga ikat antara elektron dan inti atomya rendah. Radiasi Alpha pada umumnya diikuti juga oleh peluruhan radiasi Gamma. Atom yang mengalami peluruhan radiasi Alpha, nomor massanya akan berkurang 4 dan nomor atomnya berkurang 2, sehingga radiasi Alpha disamakan dengan pembentukan inti Helium yang bermuatan listrik 2 dan bermassa 4. Contoh peluruhan radiasi Alpha adalah peluruhan Plutonium menjadi Uranium yang reaksinya sebagai berikut: 
94Pu239––>2He4 + 92U235 (2He4 = radiasi Alpha) 
2. Radiasi Beta Negatif (b-)
Radiasi Beta Negatif disamakan dengan pemancaran elektron dari suatu inti atom. Bentuk radiasi ini terjadi pada inti yang kelebihan elektron dan pada umumnya juga disertai juga dengan radiasi Gamma. Pada radiasi Beta Negatif, nomor atom akan bertambah 1, sedangkan nomor massanya tetap. Contoh peluruhan radiasi Beta Negatif adalah : 
56Ba140 ––>-1e0 + 57La140(-1e0 = elektron negatif) 
3. Radiasi Beta Positif (b +)
Radiasi ini sama dengan pancaran positron (elektron positif) dari inti atom. Bentuk peluruhan ini terjadi pada inti yang kelebihan proton. Pancaran positron dapat terjadi bila perbedaan energi antara inti semula dengan inti hasil perubahan (reaksi inti) paling tidak sama dengan 1,02 MeV. Radiasi Beta Positif akan selalu diikuti dengan peristiwa annihilasi atau peristiwa penggabungan, karena begitu terbentuk zarah Beta (+) akan langsung bergabung dengan elektron (-) yang banyak terdapat di alam ini dan menghasilkan radiasi Gamma yang lemah. Contoh radiasi Beta Positif : 
7N13 ––> +1e0 + 6C13 (+1e0 = elektron positif / positron) 
+1e0 + -1e0 ––> 200(menghasilkan 2 foton Gamma) 
Jenis radiasi lainnya (radiasi Gamma, radiasi Neutron dan lain sebagainya) tidak dibahas dalam kaitannya dengan baterai nuklir, karena dalam peluruhannya tidak menghasilkan elektron atau muatan listrik yang langsung dapat mengionisasi medium yang pada akhirnya dapat diubah menjadi tenaga listrik arus searah. Selain dari itu, radiasi Gamma dan Neutron mempunyai daya tembus yang sangat besar, sehingga menyulitkan untuk mengukungnya agar radiasi tidak menembus dinding baterai nuklir. Kalaupun dinding baterai buklir dibuat tebal, akan berdampak pada masalah biaya dan secara teknis akan kalah bersaing dengan sumber radiasi Beta (b-) yang banyak digunakan dalam baterai nuklir. 

Berbagai Macam Baterai Nuklir 

Pemanfaatan energi nuklir untuk diubah menjadi tenaga listrik arus searah (DC) adalah karena timbulnya elektron atau muatan listrik pada peristiwa peluruhan zat radioaktif. Oleh karena itu, sumber arus searah baterai nuklir ini berasal dari radioisotop yang memancarkan radiasi Alpha, Beta Negatif maupun Beta Positif. Mengingat daya tembus radiasi Alpha sangat kecil, maka radioisotop pemancar Alpha jarang digunakan, karena menyulitkan dalam proses pembuatannya, kecuali bila akan dimanfaatkan untuk mengionisasi langsung medium baterai nuklir. Radioisotop pemancar Beta Positif (b+) jarang digunakan sebagai sumber tenaga baterai nuklir karena sumber baterai nuklir adalah radioisotop pemancar radiasi Beta Negatif (b-). Kemampuan sumber radiasi untuk menghasilkan elektron sekunder dalam tumbukannya dengan medium baterai nuklir, juga dipakai sebagai bahan pertimbangan dalam memilih sumber radioisotop. Penelitian dan pengembangan pembuatan baterai nuklir sangat menarik perhatian para ahli, karena tegangan yang diperoleh dari baterai nuklir relatif konstan dan bisa mencapai orde beberapa ribu volt, sehingga sangat menguntungkan dalam pemakaiannya. Sedangkan umur pakainya sangat panjang, bisa mencapai 2 kali waktu paro radioisotop yang digunakan. Namun demikian, efisiensinya dan arus yang dihasilkan sejauh ini masih rendah, untuk itu perlu ditingkatkan lebih jauh lagi. Adapun rendahnya arus yang dihasilkan karena adanya pengaruh nuclear barrier transmission (d) yang dinyatakan dalam persamaan : 
  di mana : X1 dan X2 = titik partikel pada saat masuk dan meninggalkan potensial barrier. 
M= massa partikel. 
V(x)= potensial energi sebagai fungsi barrier. 
T= energi kinetik partikel. 
h= konstanta Planck. 
Mengingat bahwa nuclear barrier transmission merupakan fungsi dari massa radioisotop yang digunakan dan energi kinetik radiasi yang dipancarkan, maka usaha untuk meningkatkan arus harus memperhatikan sumber radioisotop yang digunakan dan juga energi kinetik radiasinya. 
Berbagai macam model baterai nuklir yang sudah dikembangkan sejauh ini adalah sebagai berikut; 
1. Baterai nuklir “high speed electrons battery”:
Baterai ini dinamakan juga dengan baterai nuklir Beta, sesuai dengan jenis radiasi yang dipancarkan oleh radioisotop yang digunakan. Baterai nuklir ini bisa menghasilkan tegangan sampai beberapa ribu volt. Tegangan yang tinggi ini dipengaruhi oleh kerapatan isolator yang digunakan, sehingga tidak terjadi kebocoran yang dapat menimbulkan ionisasi udara di sekitar terminal elektrodenya. Arus yang dihasilkan masih rendah dan perlu dinaikkan lagi dengan memperhatikan masalah nuclear barrier transmission seperti yang diuraikan di atas. Radioisotop yang digunakan dalam baterai ini adalah Strontium-90 (Sr90) yang mempunyai waktu paro 28 tahun, sehingga umur pakai baterai nuklir jenis ini bisa dua kali waktu paronya, yaitu 56 tahun. Bagan baterai nuklir jenis ini dapat dilihat pada Gambar 1. 
2. Baterai nuklir “contact potential difference battery” 
Baterai nuklir ini sering disingkat dengan baterai CPD (Contact Difference Potential). Elektrode yang digunakan adalah 2 jenis bahan logam yang mempunyai sifat “work function” yang sangat berbeda. Work function suatu bahan adalah energi yang diperlukan untuk membebaskan elektron keluar orbitnya. Bahan elektrode yang mempunyai sifat work function yang sangat jauh berbeda adalah Seng (Zn) dan Karbon. Ruang diantara kedua elektrode, yaitu antara bahan logam yang mempunyai sifat “work function” tinggi dan bahan logam yang mempunyai “work function” rendah, diisi medium berbentuk gas, yaitu Tritium yang setiap saat dapat diionisasikan oleh radioisotop menghasilkan elektron dan ion positif. Hasil ionisasi (elektron dan ion) akan menuju ke masing-masing elektrodenya sesuai dengan muatan listrik yang dibawanya. Penyerahan muatan listrik ke masing-masing elektrode akan menimbulkan arus listrik searah secara berkesinambungan. Radioisotop yang digunakan sama dengan baterai nuklir pertama, yaitu Strontium 90 (Sr90). Bagan baterai nuklir CPD dapat dilihat pada Gambar 2. 
3. Baterai nuklir PN junction 
Baterai nuklir ini memanfaatkan sifat radioisotop yang dapat menimbulkan berondongan elektron (avalanche) pada salah satu elemen diode semikonduktor yang dipasang di dalam wadah baterai. Bahan semikonduktor yang dapat menghasilkan berondongan elektron akibat terkena radiasi adalah Antimon. Sedangkan untuk elektrode positifnya digunakan Silikon. Berondongan elektron yang terbentuk akan ditarik oleh elektrode positif dan pada saat penyerahan muatan listrik akan timbul arus listrik searah seperti yang terjadi pada baterai nuklir CPD. Baterai nuklir PN junction ini walaupun tegangannya rendah tapi arus yang dihasilkan jauh lebih besar dari pada baterai nuklir lainnya. Sumber radioisotop yang digunakan adalah Prometium 147 (Pm147) yang mempunyai waktu paro 2,5 tahun, sehingga umur pakai baterai nuklir jenis ini bisa mencapai 5 tahun. Bagan baterai nuklir PN junction ini dapat dilihat pada Gambar 3. 
4. Baterai nuklir termokopel 
Baterai nuklir jenis ini memanfaatkan panas yang ditimbulkan oleh radioisotop yang ditempatkan pada bagian dalam wadah yang dilengkapi dengan dua jenis logam yang bersifat sebagai termokopel. Arus yang timbul dari adanya termokopel dapat menjadi tenaga baterai. Bagan baterai nuklir jenis termokopel dapat dilihat pada Gambar 4. 
5. Baterai nuklir “secondary emitter” 
Baterai nuklir jenis ini menggunakan radioisotop yang dapat menumbuk bahan target yang peka terhadap radiasi, sehingga akan menimbulkan elektron sekunder akibat tumbukan tersebut. Elektron sekunder ini akan dikumpulkan oleh elektrode yang tidak peka terhadap radiasi. Perbedaan tegangan pada kedua elektrode tersebut akan menghasilkan arus listrik yang besarnya proporsional dengan energi yang dibawa oleh elektron sekunder. Skema baterai nuklir jenis ini dapat dilihat pada Gambar 5. 
6. Baterai nuklir fotolistrik 
Baterai nuklir fotolistrik ini memanfaatkan sifat bahan sintilator yang akan mengeluarkan pendar cahaya (foton) bila terkena radiasi. Pendar cahaya (foton) yang timbul kemudian diubah menjadi tenaga listrik oleh bahan semikonduktor yang peka terhadap foton cahaya. Foton cahaya dapat juga diubah menjadi tenaga listrik oleh sel fotolistrik. Bahan sintilator yang digunakan dapat berupa Posfor, Natrium Iodida yang diberi Thalium. Gambar 6 menunjukkan skema baterai nuklir jenis fotolistrik yang dimaksud. 
7. Baterai nuklir “photon junction” 
Baterai nuklir ini menggunakan posfor radioaktif (P32) sebagai sumber radioisotopnya yang diapit oleh bahan semikonduktor. Bahan semikonduktor diletakkan berhimpitan dengan “semiconductor surface layer” agar dapat terjadi perpindahan “electron hole” akibat terkena radiasi P32. Adanya perpindahan electron hole pada bahan semikonduktor ini akan menimbulkan pulsa listrik yang besarnya sama dengan energi pendar cahaya yang terjadi. Tegangan baterai nuklir ini relatif konstan. Gambar 7 menunjukkan skema baterai nuklir jenis “photon junction”.

Penutup

Berdasarkan uraian di muka tampak bahwa penelitian dan pengembangan pembuatan baterai nuklir dari berbagai macam jenis yang pernah dibuat, masih perlu ditingkatkan lagi untuk memperoleh efisiensi baterai nuklir yang lebih baik dan juga untuk dapat menaikkan arus listriknya agar diperoleh daya keluaran yang lebih baik. Umur paro radioisotop yang digunakan akan sangat mempengaruhi umur pakai baterai dan juga kestabilan tegangan baterai nuklir. Bahan radioisotop pemancar radiasi Beta yang dapat digunakan menjadi sumber energi baterai nuklir bisa diperoleh dari hasil fisi yang dihasilkan oleh reaktor nuklir maupun oleh akselerator. Produk radioisotop yang sampai saat ini sudah dipasarkan menjadi baterai nuklir adalah dari deret Lantanida, yaitu Prometium (Pm147) yang bisa mencapai umur pakai lebih dari 5 tahun per baterai. Bila umur paro radioisotop yang digunakan panjang, maka wadah baterai nuklir harus dibuat sedemikian rupa agar supaya tidak bocor selama dalam pemakaian, karena hal ini menyangkut masalah keselamatan lingkungan dan proteksi radiasi. Satu hal yang perlu diketahui bahwa baterai nuklir yang sudah tidak dipakai tidak boleh dibuang sembrangan, mengingat di dalamnya mengandung bahan radioaktif, sehingga pembuangannya memerlukan pengaturan tersendiri sesuai dengan ketentuan yang telah ditetapkan. Untuk Indonesia pengaturan masalah ini ditetapkan oleh Badan Tenaga Nuklir atau BAPETEN yang berkedudukan di Jakarta. 

Algoritma dan Pemrograman


1.  Apakah Itu Algoritma
Ditinjau dari asal-usul katanya, kata Algoritma sendiri mempunyai sejarah yang aneh. Orang hanya menemukan kata algorism yang berarti proses menghitung dengan angka arab. Anda dikatakan algorist jika Anda menghitung menggunakan angka arab. Para ahli bahasa berusaha menemukan asal kata ini namun hasilnya kurang memuaskan. Akhirnya para ahli sejarah matematika menemukan asal kata tersebut yang berasal dari nama penulis buku arab yang terkenal yaitu Abu Ja’far Muhammad Ibnu Musa Al-Khuwarizmi. Al-Khuwarizmi dibaca orang barat menjadi Algorism. Al-Khuwarizmi menulis buku yang berjudul Kitab Al Jabar Wal-Muqabala yang artinya “Buku pemugaran dan pengurangan” (The book of restoration and reduction). Dari judul buku itu kita juga memperoleh akar kata “Aljabar” (Algebra). Perubahan kata dari algorism menjadi algorithm muncul karena kata algorism sering dikelirukan dengan arithmetic, sehingga akhiran –sm berubah menjadi –thm. Karena perhitungan dengan angka Arab sudah menjadi hal yang biasa, maka lambat laun kata algorithm berangsur-angsur dipakai sebagai metode perhitungan (komputasi) secara umum, sehingga kehilangan makna kata aslinya. Dalam bahasa Indonesia, kata algorithm diserap menjadi algoritma.

2.  Definisi Algoritma

“Algoritma adalah urutan langkah-langkah logis penyelesaian masalah yang disusun secara sistematis dan logis”. Kata logis merupakan kata kunci dalam algoritma. Langkah-langkah dalam algoritma harus logis dan harus dapat ditentukan bernilai salah atau benar. Dalam beberapa konteks, algoritma adalah spesifikasi urutan langkah untuk melakukan pekerjaan tertentu. Pertimbangan dalam pemilihan algoritma adalah, pertama, algoritma haruslah benar. Artinya algoritma akan memberikan keluaran yang dikehendaki dari sejumlah masukan yang diberikan. Tidak peduli sebagus apapun algoritma, kalau memberikan keluaran yang salah, pastilah algoritma tersebut bukanlah algoritma yang baik.
Pertimbangan kedua yang harus diperhatikan adalah kita harus mengetahui seberapa baik hasil yang dicapai oleh algoritma tersebut. Hal ini penting terutama pada algoritma untuk menyelesaikan masalah yang memerlukan aproksimasi hasil (hasil yang hanya berupa pendekatan). Algoritma yang baik harus mampu memberikan hasil yang sedekat mungkin dengan nilai yang sebenarnya.
Ketiga adalah efisiensi algoritma. Efisiensi algoritma dapat ditinjau dari 2 hal yaitu efisiensi waktu dan memori. Meskipun algoritma memberikan keluaran yang benar (paling mendekati), tetapi jika kita harus menunggu berjam-jam untuk mendapatkan keluarannya, algoritma tersebut biasanya tidak akan dipakai, setiap orang menginginkan keluaran yang cepat. Begitu juga dengan memori, semakin besar memori yang terpakai maka semakin buruklah algoritma tersebut. Dalam kenyataannya, setiap orang bisa membuat algoritma yang berbeda untuk menyelesaikan suatu permasalahan, walaupun terjadi perbedaan dalam menyusun algoritma, tentunya kita mengharapkan keluaran yang sama. Jika terjadi demikian, carilah algoritma yang paling efisien dan cepat.

3.  Beda Algoritma dan Program

Program adalah kumpulan pernyataan komputer, sedangkan metode dan tahapan sistematis dalam program adalah algoritma. Program ditulis dengan menggunakan bahasa pemrograman. Jadi bisa disebut bahwa program adalah suatu implementasi dari bahasa pemrograman. Beberapa pakar memberi formula bahwa :

Program = Algoritma + Bahasa (Struktur Data)
Bagaimanapun juga struktur data dan algoritma berhubungan sangat erat pada sebuah program. Algoritma yang baik tanpa pemilihan struktur data yang tepat akan membuat program menjadi kurang baik, demikian juga sebaliknya.
Pembuatan algoritma mempunyai banyak keuntungan di antaranya :
  • Pembuatan atau penulisan algoritma tidak tergantung pada bahasa pemrograman manapun, artinya penulisan  algoritma independen dari bahasa pemrograman dan komputer yang melaksanakannya.
  • Notasi algoritma dapat diterjemahkan ke dalam berbagai bahasa pemrograman.
  • Apapun bahasa pemrogramannya, output yang akan dikeluarkan sama karena algoritmanya sama.
Beberapa hal yang perlu diperhatikan dalam membuat algoritma :
  • Teks algoritma berisi deskripsi langkah-langkah penyelesaian masalah. Deskripsi tersebut dapat ditulis dalam notasi apapun asalkan mudah dimengerti dan dipahami.
  • Tidak ada notasi yang baku dalam penulisan teks algoritma seperti notasi bahasa pemrograman. Notasi yang digunakan dalam menulis algoritma disebut notasi algoritmik.
  • Setiap orang dapat membuat aturan penulisan dan notasi algoritmik sendiri. Hal ini dikarenakan teks algoritma tidak sama dengan teks program. Namun, supaya notasi algoritmik mudah ditranslasikan ke dalam notasi bahasa pemrograman tertentu, maka sebaiknya notasi algoritmik tersebut berkorespondensi dengan notasi bahasa pemrograman secara umum.
  • Notasi algoritmik bukan notasi bahasa pemrograman, karena itu pseudocode dalam notasi algoritmik tidak dapat dijalankan oleh komputer. Agar dapat dijalankan oleh komputer, pseudocode dalam notasi algoritmik harus ditranslasikan atau diterjemahkan ke dalam notasi bahasa pemrograman yang dipilih. Perlu diingat bahwa orang yang menulis program sangat terikat dalam aturan tata bahasanya dan spesifikasi mesin yang menjalannya.
  • Algoritma sebenarnya digunakan untuk membantu kita dalam mengkonversikan suatu permasalahan ke dalam bahasa pemrograman.
  • Algoritma merupakan hasil pemikiran konseptual, supaya dapat dilaksanakan oleh komputer, algoritma harus ditranslasikan ke dalam notasi bahasa pemrograman. Ada beberapa hal yang harus diperhatikan pada translasi tersebut, yaitu :
a.  Pendeklarasian variabel
Untuk mengetahui dibutuhkannya pendeklarasian variabel dalam penggunaan bahasa pemrograman apabila    tidak semua bahasa pemrograman membutuhkannya.

b.  Pemilihan tipe data
Apabila bahasa pemrograman yang akan digunakan membutuhkan pendeklarasian variabel maka perlu hal ini dipertimbangkan pada saat pemilihan tipe data.

c.  Pemakaian instruksi-instruksi
Beberapa instruksi mempunyai kegunaan yang sama tetapi masing-masing memiliki kelebihan dan kekurangan yang berbeda.

d.  Aturan sintaksis
Pada saat menuliskan program kita terikat dengan aturan sintaksis dalam bahasa pemrograman yang akan digunakan.

e.  Tampilan hasil
Pada saat membuat algoritma kita tidak memikirkan tampilan hasil yang akan disajikan. Hal-hal teknis ini diperhatikan ketika mengkonversikannya menjadi program.

f.  Cara pengoperasian compiler atau interpreter.
Bahasa pemrograman yang digunakan termasuk dalam kelompok compiler atau interpreter.

4.  Algoritma Merupakan Jantung Ilmu Informatika

Algoritma adalah jantung ilmu komputer atau informatika. Banyak cabang ilmu komputer yang mengarah ke dalam terminologi algoritma. Namun, jangan beranggapan algoritma selalu identik dengan ilmu komputer saja. Dalam kehidupan sehari-hari pun banyak terdapat proses yang dinyatakan dalam suatu algoritma. Cara-cara membuat kue atau masakan yang dinyatakan dalam suatu resep juga dapat disebut sebagai algoritma. Pada setiap resep selalu ada urutan langkah-langkah membuat masakan. Bila langkah-langkahnya tidak logis, tidak dapat dihasilkan masakan yang diinginkan. Ibu-ibu yang mencoba suatu resep masakan akan membaca satu per satu langkah-langkah pembuatannya lalu ia mengerjakan proses sesuai yang ia baca. Secara umum, pihak (benda) yang mengerjakan proses disebut pemroses (processor). Pemroses tersebut dapat berupa manusia, komputer, robot atau alat-alat elektronik lainnya. Pemroses melakukan suatu proses dengan melaksanakan atau “mengeksekusi” algoritma yang menjabarkan proses tersebut.
Algoritma adalah deskripsi dari suatu pola tingkah laku yang dinyatakan secara primitif yaitu aksi-aksi yang didefenisikan sebelumnya dan diberi nama, dan diasumsikan sebelumnya bahwa aksi-aksi tersebut dapat kerjakan sehingga dapat menyebabkan kejadian.
Melaksanakan algoritma berarti mengerjakan langkah-langkah di dalam algoritma tersebut. Pemroses mengerjakan proses sesuai dengan algoritma yang diberikan kepadanya. Juru masak membuat kue berdasarkan resep yang diberikan kepadanya, pianis memainkan lagu berdasarkan papan not balok. Karena itu suatu algoritma harus dinyatakan dalam bentuk yang dapat dimengerti oleh pemroses. Jadi suatu pemroses harus:
  • Mengerti setiap langkah dalam algoritma.
  • Mengerjakan operasi yang bersesuaian dengan langkah tersebut.

5.  Mekanisme Pelaksanaan Algoritma oleh Pemroses
Komputer hanyalah salah satu pemroses. Agar dapat dilaksanakan oleh komputer, algoritma harus ditulis dalam notasi bahasa pemrograman sehingga dinamakan program. Jadi program adalah perwujudan atau implementasi teknis algoritma yang ditulis dalam bahasa pemrograman tertentu sehingga dapat dilaksanakan oleh komputer.
Kata “algoritma” dan “program” seringkali dipertukarkan dalam penggunaannya. Misalnya ada orang yang berkata seperti ini: “program pengurutan data menggunakan algoritma selection sort”. Atau pertanyaan seperti ini: “bagaimana algoritma dan program menggambarkan grafik tersebut?”. Jika Anda sudah memahami pengertian algoritma yang sudah disebutkan sebelum ini, Anda dapat membedakan arti kata algoritma dan program. Algoritma adalah langkah-langkah penyelesaikan masalah, sedangkan program adalah realisasi algoritma dalam bahasa pemrograman. Program ditulis dalam salah satu bahasa pemrograman dan kegiatan membuat program disebut pemrograman (programming). Orang yang menulis program disebut pemrogram (programmer). Tiap-tiap langkah di dalam program disebut pernyataan atau instruksi. Jadi, program tersusun atas sederetan instruksi. Bila suatu instruksi dilaksanakan, maka operasi-operasi yang bersesuaian dengan instruksi tersebut dikerjakan komputer.
Secara garis besar komputer tersusun atas empat komponen utama yaitu, piranti masukan, piranti keluaran, unit pemroses utama, dan memori. Unit pemroses utama (Central Processing Unit – CPU) adalah “otak” komputer, yang berfungsi mengerjakan operasi-operasi dasar seperti operasi perbandingan, operasi perhitungan, operasi membaca, dan operasi menulis. Memori adalah komponen yang berfungsi menyimpan atau mengingatingat.
Yang disimpan di dalam memori adalah program (berisi operasi-operasi yang akan dikerjakan oleh CPU) dan data atau informasi (sesuatu yang diolah oleh operasi-operasi). Piranti masukan dan keluaran (I/O devices) adalah alat yang memasukkan data atau program ke dalam memori, dan alat yang digunakan komputer untuk mengkomunikasikan hasil-hasil aktivitasnya. Contoh piranti masukan antara lain, papan kunci (keyboard), pemindai (scanner), dan cakram (disk). Contoh piranti keluaran adalah, layar peraga (monitor), pencetak (printer), dan cakram.
Mekanisme kerja keempat komponen di atas dapat dijelaskan sebagai berikut. Mula-mula program dimasukkan ke dalam memori komputer. Ketika program dilaksanakan (execute), setiap instruksi yang telah tersimpan di dalam memori dikirim ke CPU. CPU mengerjakan operasioperasi yang bersesuaian dengan instruksi tersebut. Bila suatu operasi memerlukan data, data dibaca dari piranti masukan, disimpan di dalam memori lalu dikirim ke CPU untuk operasi yang memerlukannya tadi. Bila proses menghasilkan keluaran atau informasi, keluaran disimpan ke dalam memori, lalu memori menuliskan keluaran tadi ke piranti keluaran (misalnya dengan menampilkannya di layar monitor).

6.  Belajar Memprogram dan Belajar Bahasa Pemrograman
Belajar memprogram tidak sama dengan belajar bahasa pemrograman. Belajar memprogram adalah belajar tentang metodologi pemecahan masalah, kemudian menuangkannya dalam suatu notasi tertentu yang mudah dibaca dan dipahami. Sedangkan belajar bahasa pemrograman berarti belajar memakai suatu bahasa aturan-aturan tata bahasanya, pernyataan-pernyataannya, tata cara pengoperasian compiler-nya, dan memanfaatkan pernyataan-pernyataan tersebut untuk membuat program yang ditulis hanya dalam bahasa itu saja. Sampai saat ini terdapat puluhan bahasa pemrogram, antara lain bahasa rakitan (assembly), Fortran, Cobol, Ada, PL/I, Algol, Pascal, C, C++, Basic, Prolog, LISP, PRG, bahasabahasa simulasi seperti CSMP, Simscript, GPSS, Dinamo. Berdasarkan terapannya, bahasa pemrograman dapat digolongkan atas dua kelompok besar :
  • Bahasa pemrograman bertujuan khusus. Yang termasuk kelompok ini adalah Cobol (untuk terapan bisnis dan administrasi). Fortran (terapan komputasi ilmiah), bahasa rakitan (terapan pemrograman mesin), Prolog (terapan kecerdasan buatan), bahasa-bahasa simulasi, dan sebagainya.
  • Bahasa perograman bertujuan umum, yang dapat digunakan untuk berbagai aplikasi. Yang termasuk kelompok ini adalah bahasa Pascal, Basic dan C. Tentu saja pembagian ini tidak kaku. Bahasabahasabertujuan khusus tidak berarti tidak bisa digunakan untuk aplikasi lain. Cobol misalnya, dapat juga digunakan untuk terapan ilmiah, hanya saja kemampuannya terbatas. Yang jelas, bahasabahasa pemrograman yang berbeda dikembangkan untuk bermacam-macam terapan yang berbeda pula.
Berdasarkan pada apakah notasi bahasa pemrograman lebih “dekat” ke mesin atau ke bahasa manusia, maka bahasa pemrograman dikelompokkan atas dua macam :
  • Bahasa tingkat rendah. Bahasa jenis ini dirancang agar setiap instruksinya langsung dikerjakan oleh komputer, tanpa harus melalui penerjemah (translator). Contohnya adalah bahasa mesin. CPU mengambil instruksi dari memori, langsung mengerti dan langsung mengerjakan operasinya. Bahasa tingkat rendah bersifat primitif, sangat sederhana, orientasinya lebih dekat ke mesin, dan sulit dipahami manusia. Sedangkan bahasa rakitan dimasukkan ke dalam kelompok ini karena alasan notasi yang dipakai dalam bahasa ini lebih dekat ke mesin, meskipun untuk melaksanakan instruksinya masih perlu penerjemahan ke dalam bahasa mesin.
  • Bahasa tingkat tinggi, yang membuat pemrograman lebih mudah dipahami, lebih “manusiawi”, dan berorientasi ke bahasa manusia (bahasa Inggris). Hanya saja, program dalam bahasa tingkat tinggi tidak dapat langsung dilaksanakan oleh komputer. Ia perlu diterjemahkan terlebih dahulu oleh sebuah translator bahasa (yang disebut kompilator atau compiler) ke dalam bahasa mesin sebelum akhirnya dieksekusi oleh CPU. Contoh bahasa tingkat tinggi adalah Pascal, PL/I, Ada, Cobol, Basic, Fortran, C, C++, dan sebagainya.
Bahasa pemrograman bisa juga dikelompokkan berdasarkan pada tujuan dan fungsinya. Di antaranya adalah :

7.  Menilai Sebuah Algoritma

Ketika manusia berusaha memecahkan masalah, metode atau teknik yang digunakan untuk memecahkan masalah itu ada kemungkinan bisa banyak (tidak hanya satu). Dan kita memilih mana yang terbaik di antara teknikteknik itu. Hal ini sama juga dengan algoritma, yang memungkinkan suatu permasalahan dipecahkan dengan metode dan logika yang berlainan. Yang menjadi pertanyaan adalah bagaimana mengukur mana algoritma yang terbaik?. Beberapa persyaratan untuk menjadi algoritma yang baik adalah :
  • Tingkat kepercayaannya tinggi (realibility). Hasil yang diperoleh dari proses harus berakurasi tinggi dan benar.
  • Pemrosesan yang efisien (cost rendah). Proses harus diselesaikan secepat mungkin dan frekuensi kalkulasi yang sependek mungkin.
  • Sifatnya general. Bukan sesuatu yang hanya untuk menyelesaikan satu kasus saja, tapi juga untuk kasus lain yang lebih general.
  • Bisa dikembangkan (expandable). Haruslah sesuatu yang dapat kita kembangkan lebih jauh berdasarkan perubahan requirement yang ada.
  • Mudah dimengerti. Siapapun yang melihat, dia akan bisa memahami algoritma Anda. Susah dimengertinya suatu program akan membuat susah di-maintenance (kelola).
  • Portabilitas yang tinggi (portability). Bisa dengan mudah diimplementasikan di berbagai platform komputer.
  • Precise (tepat, betul, teliti). Setiap instruksi harus ditulis dengan seksama dan tidak ada keragu-raguan, dengan demikian setiap instruksi harus dinyatakan secara eksplisit dan tidak ada bagian yang dihilangkan karena pemroses dianggap sudah mengerti. Setiap langkah harus jelas dan pasti.
Contoh :   Tambahkan 1 atau 2 pada x.
Instruksi di atas terdapat keraguan.
  • Jumlah langkah atau instruksi berhingga dan tertentu. Artinya, untuk kasus yang sama banyaknya, langkah harus tetap dan tertentu meskipun datanya berbeda.
  • Efektif. Tidak boleh ada instruksi yang tidak mungkin dikerjakan oleh pemroses yang akan menjalankannya.
Contoh :   Hitung akar 2 dengan presisi sempurna.
Instruksi di atas tidak efektif, agar efektif instruksi tersebut diubah.
Misal : Hitung akar 2 sampai lima digit di belakang koma.
  • Harus terminate. Jalannya algoritma harus ada kriteria berhenti. Pertanyaannya adalah apakah bila jumlah instruksinya berhingga maka pasti terminate?
  • Output yang dihasilkan tepat. Jika langkah-langkah algoritmanya logis dan diikuti dengan seksama maka dihasilkan output yang diinginkan.
Sedangkan kriteria Algoritma menurut Donald E. Knuth adalah :
  1. Input: algoritma dapat memiliki nol atau lebih inputan dari luar.
  2. Output: algoritma harus memiliki minimal satu buah output keluaran.
  3. Definiteness (pasti): algoritma memiliki instruksi-instruksi yang jelas dan tidak ambigu.
  4. Finiteness (ada batas): algoritma harus memiliki titik berhenti (stopping role).
  5. Effectiveness (tepat dan efisien): algoritma sebisa mungkin harus dapat dilaksanakan dan efektif. Contoh instruksi yang tidak efektif adalah: A = A + 0 atau A = A * 1
Namun ada beberapa program yang memang dirancang untuk unterminatable : contoh Sistem Operasi.

8.  Penyajian Algoritma
Penyajian algoritma secara garis besar bisa dalam 2 bentuk penyajian yaitu tulisan dan gambar. Algoritma yang disajikan dengan tulisan yaitu dengan struktur bahasa tertentu (misalnya bahasa Indonesia atau bahasa Inggris) dan pseudocode. Pseudocode adalah kode yang mirip dengan kode pemrograman yang sebenarnya seperti Pascal, atau C, sehingga lebih tepat digunakan untuk menggambarkan algoritma yang akan dikomunikasikan kepada pemrogram. Sedangkan algoritma disajikan dengan gambar, misalnya dengan flowchart. Secara umum, pseudocode mengekspresikan ide-ide secara informal dalam proses penyusunan algoritma. Salah satu cara untuk menghasilkan kode pseudo adalah dengan meregangkan aturan-aturan bahasa formal yang dengannya versi akhir dari algoritma akan diekspresikan. Pendekatan ini umumnya digunakan ketika bahasa pemrograman yang akan digunakan telah diketahui sejak awal.

Flowchart merupakan gambar atau bagan yang memperlihatkan urutan dan hubungan antar proses beserta pernyataannya. Gambaran ini dinyatakan dengan simbol. Dengan demikian setiap simbol menggambarkan proses tertentu. Sedangkan antara proses digambarkan dengan garis penghubung. Dengan menggunakan flowchart akan memudahkan kita untuk melakukan pengecekan bagian-bagian yang terlupakan dalam analisis masalah. Di
samping itu flowchart juga berguna sebagai fasilitas untuk berkomunikasi antara pemrogram yang bekerja dalam tim suatu proyek.
Ada dua macam flowchart yang menggambarkan proses dengan komputer, yaitu :
  • Flowchart sistem yaitu bagan dengan simbol-simbol tertentu yang menggambarkan urutan prosedur dan proses suatu file dalam suatu media menjadi file di dalam media lain, dalam suatu sistem pengolahan data. Beberapa contoh Flowchart sistem:
  • Flowchart program yaitu bagan dengan simbol-simbol tertentu yang menggambarkan urutan proses dan hubungan antar proses secara mendetail di dalam suatu program.

Kaidah-Kaidah Umum Pembuatan Flowchart Program
Dalam pembuatan flowchart Program tidak ada rumus atau patokan yang bersifat mutlak. Karena flowchart merupakan gambaran hasil pemikiran dalam menganalisis suatu masalah dengan komputer. Sehingga flowchart yang dihasilkan dapat bervariasi antara satu pemrogram dengan yang lainnya. Namun secara garis besar setiap pengolahan selalu terdiri atas 3 bagian utama, yaitu :
  1. Input,
  2. Proses pengolahan dan
  3. Output
Untuk pengolahan data dengan komputer, urutan dasar pemecahan suatu masalah:
  1. START, berisi pernyataan untuk persiapan peralatan yang diperlukan sebelum menangani pemecahan persoalan.
  2. READ, berisi pernyataan kegiatan untuk membaca data dari suatu peralatan input.
  3. PROSES, berisi kegiatan yang berkaitan dengan pemecahan persoalan sesuai dengan data yang dibaca.
  4. WRITE, berisi pernyataan untuk merekam hasil kegiatan ke peralatan output.
  5. END, mengakhiri kegiatan pengolahan.
Walaupun tidak ada kaidah-kaidah yang baku dalam penyusunan flowchart, namun ada beberapa anjuran :
  1. Hindari pengulangan proses yang tidak perlu dan logika yang berbelit sehingga jalannya proses menjadi singkat.
  2. Jalannya proses digambarkan dari atas ke bawah dan diberikan tanda panah untuk memperjelas.
  3. Sebuah flowchart diawali dari satu titik START dan diakhiri dengan END.
Berikut merupakan beberapa contoh simbol flowchart yang disepakati oleh dunia pemrograman :
Untuk memahami lebih dalam mengenai flowchart ini, akan diambil sebuah kasus sederhana.

Kasus : Buatlah sebuah rancangan program dengan menggunakan flowchart, mencari luas persegi panjang.


Solusi : Perumusan untuk mencari luas persegi panjang adalah :
L = p . l
di mana, L adalah Luas persegi panjang, p adalah panjang persegi, dan l adalah lebar persegi.
Keterangan :
  1. Simbol pertama menunjukkan dimulainya sebuah program.
  2. Simbol kedua menunjukkan bahwa input data dari p dan l.
  3. Data dari p dan l akan diproses pada simbol ketiga dengan menggunakan perumusan L = p. l.
  4. Simbol keempat menunjukkan hasil output dari proses dari simbol ketiga.
  5. Simbol kelima atau terakhir menunjukkan berakhirnya program dengan tanda End.

9.  Struktur Dasar Algoritma
Algoritma berisi langkah-langkah penyelesaian suatu masalah. Langkah-langkah tersebut dapat berupa runtunan aksi (sequence), pemilihan aksi (selection), pengulangan aksi (iteration) atau kombinasi dari ketiganya. Jadi struktur dasar pembangunan algoritma ada tiga, yaitu:
  1. Struktur Runtunan
  2. Digunakan untuk program yang pernyataannya sequential atau urutan.
  3. Struktur Pemilihan
  4. Digunakan untuk program yang menggunakan pemilihan atau penyeleksian kondisi.
  5. Struktur Perulangan
  6. Digunakan untuk program yang pernyataannya akan dieksekusi berulang-ulang.

Dalam Algoritma, tidak dipakai simbol-simbol / sintaks dari suatu bahasa pemrograman tertentu, melainkan bersifat umum dan tidak tergantung pada suatu bahasa pemrograman apapun juga. Notasi-notasi algoritma dapat digunakan untuk seluruh bahasa pemrograman manapun.

Definisi Pseudo-code
Kode atau tanda yang menyerupai (pseudo) atau merupakan penjelasan cara menyelesaikan suatu masalah. Pseudo-code sering digunakan oleh manusia untuk menuliskan algoritma.
Contoh kasus : mencari bilangan terbesar dari dua bilangan yang diinputkan
Solusi Pseudo-code :
  1. Masukkan bilangan pertama
  2. Masukkan bilangan kedua
  3. Jika bilangan pertama > bilangan kedua maka kerjakan langkah 4, jika tidak, kerjakan langkah 5.
  4. Tampilkan bilangan pertama
  5. Tampilkan bilangan kedua

Solusi Algoritma :
  1. Masukkan bilangan pertama (a)
  2. Masukkan bilangan kedua (b)
  3. if a > b then kerjakan langkah 4
  4. print a
  5. print b
Contoh Lain Algortima dan Pseudo-code :

10.  Tahapan dalam Pemrograman
Langkah-langkah yang dilakukan dalam menyelesaikan masalah dalam pemrograman dengan komputer adalah :
  • Definisikan Masalah
  • Buat Algoritma dan Struktur Cara Penyelesaian
  • Menulis Program
  • Mencari Kesalahan
  • Uji dan Verifikasi Program
  • Dokumentasi Program
  • Pemeliharaan Program
 
Copyright © 2011. COMASTNET - All Rights Reserved